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Abstract

We present semiparametric tests of goodness of fit which are based on the method

of L-moments for the estimation of the nuisance parameters. This test is partic-

ularly useful for any distribution that has a convenient expression of its quantile

function. The null hypothesis states equality of the first few L-moments of the

true and the hypothesised distributions. We provide details and simulation stud-

ies for the logistic and the generalised Pareto distributions. Whereas for some

distributions the method of L-moments estimator may be less efficient than the

maximum likelihood estimator, the former has the advantage that it may be used

in semiparametric settings and that it requires weaker existence conditions than a

maximum likelihood estimator. The new tests often outperform competitor tests

for the logistic and generalised Pareto distributions.

Keywords

generalised Pareto distribution; logistic distribution; order statistics; quantile func-

tion
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1 INTRODUCTION

The initial motivation for the research presented in this paper is testing goodness

of fit for the generalised Pareto distribution (GPD). Although many statistical hy-

pothesis tests have been proposed for the GPD (Choulakian & Stephens, 2001;

Radouane & Crétois, 2002; De Boeck et al., 2011), most of them cannot be ap-

plied in all circumstances. The reason is that the GPD parameter estimators do

not always behave properly. For example, Hosking & Wallis (1987) found con-

vergence problems with maximum likelihood estimation and showed that in cer-

tain parameter ranges the method of moments had small efficiency and large bias.

Zhang (2007) proposed a likelihood moment estimation method, which is com-

putationally easy and has high asymptotic efficiency. Hosking & Wallis (1987)

preferred a method based on probability-weighted moments (Greenwood et al.,

1979). Castillo & Hadi (1997) preferred their elemental percentile method, and

they incidentally noted that the method of moments and probability-weighted mo-

ments both may result in sample observations falling outside the support of the

fitted distribution, which is known as the “feasibility problem”. See, for example,

Chen & Balakrishnan (1995) for a discussion. Part of the problems related to the

GPD is caused by the non-existence of some of the moments.

The non-existence of certain moments also affected the smooth tests and gener-

alised smooth tests of goodness of fit for the GPD that were proposed by De Boeck

et al. (2011). Smooth tests were first proposed by Neyman (1937), but a modern

and comprehensive overview is given by Rayner et al. (2009). The general con-

struction of a smooth test starts with embedding the probability density function

of the hypothesised distribution in a larger family of distributions (smooth family
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of alternatives). This involves the introduction of extra parameters (embedding

parameters), say θ, associated with user-defined score functions that should span

the space of important alternatives. The term “smooth” comes from the fact that

θ = 0 corresponds to the probability density function of the hypothesised distribu-

tion, and moving θ away from 0 makes the alternative deviate smoothly from the

hypothesised distribution. A smooth test is basically a score test for testing θ = 0

in the smooth family of alternatives. An advantage of smooth tests that make

use of polynomial score-functions is that at the rejection of the null hypothesis,

the components of the test statistic may assist in diagnosing the type of devia-

tion from the hypothesised distribution in terms of moment deviations. Rayner et

al. (2009) provide an overview of smooth and generalised smooth tests, utilising

both maximum likelihood estimators (MLE) and method of moments estimators

(MME) of the parameters. However, when applied to the GPD both MLE and

MME-based smooth tests may suffer from existence problems.

In this paper, another type of goodness of fit test is proposed. The test shares

many properties with the traditional smooth tests. For example, the test statistic

may be decomposed into components that are related to moment deviations, and

the test may be related to a family of alternatives that varies smoothly from the

hypothesised distribution. A contribution of the proposed test is that L-moments

are used instead of the classical moments, and the smooth alternative is formulated

in terms of the quantile function instead of the probability density function.

L-moments were first unified by Hosking (1990). There are two important prop-

erties of L-moments that make them suitable for goodness of fit testing. First, all

L-moments of a random variable X exist if and only if the mean of X exists and
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is finite. Second, a distribution whose mean exists is uniquely characterised by

its L-moments (Hosking, 1990, 2007). The new test therefore is referred to as

an L-moments generalised smooth test (LGST). The LGST method is particularly

convenient for distributions that have a simple definition in terms of their quantile

function. Our method is thus not only applicable to the GPD.

L-moments have been used before in goodness of fit procedures and particularly

with applications in hydrology and meteorology. Examples include Chowdhurry

et al. (1991) for the generalised extreme value distribution and Harri & Coble

(2011) for the normal distribution. In the discussion section (Section 6), we will

relate our methods to existing methods.

Section 2 is a brief introduction to L-moments and the method of L-moments for

parameter estimation. In Section 3 the LGST test is described in full generality.

Section 4 reviews a simulation study in which the powers of the LGST are com-

pared to powers of competitor tests for two selected parent distributions: the GPD

and the logistic distribution. The test is also demonstrated on an example data set

in Section 5. Conclusions are provided in Section 6.

2 L-MOMENTS

2.1 L-Moments and their Sample Estimators

If F denotes the cumulative distribution function of the random variable X with

support S ⊆ R, then the quantile function of X is defined as Q(u) = inf{x ∈

S : F (x) ≥ u}. The quantile function can be notationally simplified to Q(u) =
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F−1(u) when F is continuous.

The theory of L-moments was unified by Hosking (1990). L-moment theory is

parallel with the theory of conventional moments and in particular the sample L-

moments, being linear functions of the sample observations, are more robust than

their conventional sample moment counterparts. Hosking (1990) also demon-

strated that probability weighted moments (Greenwood et al., 1979) can be ex-

pressed as linear combinations of L-moments. Consequently, several results for

L-moments can be traced back to the probability weighted moments literature.

We limit the discussion here to continuous distributions. Let X1, . . . , Xn denote

n sample observations that are i.i.d. with cumulative distribution function F , and

let Xi:n denote the ith order statistic of the sample. The rth L-moment is defined

as

λr =
1

r

r−1∑
s=0

(−1)s
(
r − 1

s

)
E (Xr−s:r) = (2r − 1)−1/2

∫ 1

0

Q(u)hr−1(u)du, (1)

in which

hr(u) = (2r + 1)1/2
r∑
s=0

(−1)r−s
(
r

s

)(
r + s

s

)
us

represents the rth order normalised shifted Legendre polynomial. These poly-

nomials are orthonormal over [0, 1]. Note that in many papers the defintion of

L-moments (1) lacks the factor (2r − 1)−1/2 = (2(r − 1) + 1)−1/2 because they

use the non-normalised polynomials. The reason for using normalised polynomi-

als is that this is a convention in the construction of smooth tests and doing so will

simplify expressions in Section 3.
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The first four L-moments are given by

λ1 = E (X) , λ2 =
1

2
E (X2:2 −X1:2) ,

λ3 =
1

3
E (X3:3 − 2X2:3 +X1:3) and λ4 =

1

4
E (X4:4 − 3X3:4 + 3X2:4 −X1:4) .

The first L-moment thus coincides with the mean. The second order L-moment is

a measure of scale, as is the classical second moment, and λ3 and λ4 are related

to skewness and kurtosis, respectively. Note that all moments are linear in the ex-

pected order statistics, and consequently all L-moments are expressed in the same

units as the original random variableX . For some applications and derivations the

unitless L-moment ratios λ3/λ2 (L-skew) and λ4/λ2 (L-kurtosis) are preferred.

The definition of L-moments in terms of expectations of order statistics implies

that the L-moments can be estimated as averages of linear combinations of sam-

ple order statistics. For example, the sample estimator of λ1 is the sample mean
1
n

∑n
i=1Xi, and the sample estimator of λ2 is 1

2

(
n
2

)−1∑
i>j(Xi:n−Xj:n), which is

0.5 times the Gini mean difference statistic. More generally, the sample estimator

of λr involves an r-tuple summation. Fortunately, a computationally efficient for-

mulation of these estimators was proposed by Hosking et al. (1985). In particular,

the sample estimator of λr can also be calculated as λ̂r =
∑r−1

k=1 pr−1,kbk, where

bk = n−1
n∑
i=1

(i− 1)(i− 2) · · · (i− k)

(n− 1)(n− 2) · · · (n− k)
Xi:n, and

pr−1,k = (−1)r−k−1
(
r − 1

k

)(
r + k − 1

k

)
.

Theorem 3 in Hosking (1990) gives the asymptotic normality of the sample esti-

mators λ̂r provided that the first two moments are finite. The asymptotic covari-
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ance matrix of n1/2(λ̂1 − λ1, . . . , λ̂k − λk) is denoted by Λk.

2.2 Method of L-Moments Estimation

Suppose f(x; β) denotes the probability density function of a distribution that is

indexed by the p-dimensional parameter vector β. In goodness of fit testing, when

the null hypothesis states that the sample data come from f(x; β) without β being

specified, β is referred to as a nuisance parameter. Although the MLE of β is

usually an efficient estimator, it is not always the most meaningful choice as will

be clarified in Section 3. The MME of β may not always be efficient, but in

goodness of fit testing the MME may have advantages of interpretability; see, for

example, Rayner et al. (2009). The MME of β, say β̃, makes the first p sample

moments agree with those of f(x; β̃). If in the method of moments procedure the

conventional moments are replaced by the corresponding L-moments, the method

of L-moments is obtained. The method of L-moments estimator (MLME) of β

will be denoted by β̂. Because the MLME may be expressed as a function of the

sample L-moments, the sampling distribution of the MLME may be derived from

the sampling distributions of the sample L-moments. For many distributions the

MLMEs are asymptotically normal; see, for example, Hosking (1986), Hosking

et al. (1985), Hosking & Wallis (1987) and Hosking (2009). Despite the MLME

generally not being asymptotically optimal, their efficiencies relative to the MLE

are often quite large, even in small to moderately large samples (Hosking, 1990).

More details are postponed to Section 3. Explicit formulae of MLMEs for the

logistic distribution and the GPD are given in Supplementary Material Appendix

1.
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3 L-MOMENTS GENERALISED SMOOTH TESTS

3.1 The Null Hypothesis

Let f(x) denote the true density function of X , and suppose a sample of n i.i.d.

observations is available. The one-sample goodness of fit null hypothesis is for-

mulated as

HP
0 : f ∈ FP = {f(·; β) : β ∈ B ⊆ Rp}.

This null hypothesis is referred to as the full parametric (P) null hypothesis, be-

cause it fixes all moments of f to the corresponding moments of f(·; β). The

alternative hypothesis is then usually formulated as H1 : f /∈ FP, but not all good-

ness of fit tests are consistent for each fixed alternative in H1. It has been argued

that traditional smooth and generalised smooth tests of fixed order k are basically

tests for the semiparametric (SP) null hypothesis (Henze & Klar, 1996; Henze,

1997; Klar, 2000; Rayner et al., 2009; Thas et al., 2009; Thas, 2010). The SP null

hypothesis states that the distribution of the sample observations agrees with the

hypothesised distribution in the first k moments. It may be formulated as

HSP
0 : f ∈ FSP = {g : mr(g) = mr(f(·; β)), β ∈ B ⊆ Rp, r = 1, . . . , k}, (2)

where mr(g) and mr(f(·; β)) denote the r-th moments of g and f(·; β), respec-

tively. The smooth test statistic is basically a quadratic form in statistics that

contrast the sample moments with the hypothesised moments, which may in turn

depend on the estimated nuisance parameters. In this setting the MLE of β is

not defined, because HSP
0 does not fully specify f(·; β). Moreover, because HSP

0
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is formulated in terms of agreement of moments, the MME and the MLME are

natural choices, particularly because their use simplifies the interpretation of the

test.

3.2 The L-Moment Generalised Smooth Test

We propose smooth tests for testing null hypothesis (2) with the moments mr

replaced by the corresponding L-moments. A motivation is the less restrictive

existence conditions of L-moments compared to conventional moments. By doing

so, it will be most natural to estimate the nuisance parameter by the method of L-

moments.

If the sample estimator λ̂r is denoted as λr(X), with X t = (X1, . . . , Xn) the

vector of n i.i.d. sample observations, and if λ0r(β) = mr(f(.; β)) denotes the

rth L-moment of the hypothesised distribution f(.; β), then we define θr(X, β) =

λr(X) − λ0r(β), r = 1, 2, . . .. Thus, for f ∈ FSP , E (θr(X, β)) = 0 for r =

1, 2, . . . , k, and the MLME of β is the solution of θr(X; β) = 0, r = 1, . . . , p.

Our test statistic is based on the statistics θ̂r = θr(X, β̂) = λr(X) − λ0r(β̂) (r =

1, 2, . . . , k > p). The statistic θ̂r measures the deviation between the rth empirical

L-moment and the rth L-moment of f(.; β) with β replaced by its MLME. A direct

consequence of the use of MLME is that the first p statistics θ̂r (r = 1, . . . , p) are

zero due the to the estimation procedure and so they provide no information about

testing goodness of fit.

Finally, the following vector notation is used: λt0 = (λt0β, λ
t
0θ) where λt0β =

(λ01, . . . , λ0p), λt0θ = (λ0p+1, . . . , λ0k), λ̂tβ = (λ̂1, . . . , λ̂p) and λ̂tθ = (λ̂p+1, . . . , λ̂k).
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To clarify, the subscript 0 refers to the null hypothesis and the subscripts β and θ

refer to the first p orders and the orders p + 1 up to k, respectively. We define the

p× p matrix C(λ∗) as the matrix with element (i, j) equal to (i, j = 1, . . . , p)

∂

∂λj
βi(λ)|λ=λ∗

(the existence of these derivatives will be guaranteed by assumptions made in the

statements of the lemma and theorem following).

The asymptotic distribution of θ̂t = (θ̂p+1, . . . , θ̂k) is given in Theorem 1 fol-

lowing and the proof is given in Appendix A, but first a formal statement of the

asymptotic normality of the MLME is given. Lemma 1 is a restatement of results

by Hosking (2009, eq. (6.1)).

Lemma 1 Assume that

f ∈ FSP has finite mean and variance (A1);

for all β ∈ B, λ0β(β) is continuously differentiable and its total derivative is

invertible (A2).

Then, for all f ∈ FSP, as n→∞,

n1/2(β̂ − β)
d−→ N(0,Σ)

with Σ = CΛpC
t, where Λp is the asymptotic covariance matrix of n1/2λ̂β .

The proof of Lemma 1 is direct upon using the Inverse Function Theorem, the

asymptotic normality and consistency of the sample L-moments and the delta

method, under assumptions (A1) and (A2).
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Theorem 1 For all f ∈ FSP, assume that

f has finite mean and variance (A1);

for all β ∈ B, λ0β(β) is continuously differentiable and its total derivative is

invertible (A2);

for all β ∈ B, λ0θ(β) is differentiable (A3);

for all β ∈ B, the matrix M(β)ΛkM
t(β), with M(β) as defined in Appendix

A, is positive definite (A4).

Then, underHSP
0 , when k > p, as n→∞, n1/2θ̂ converges weakly to a zero-mean

normal distribution with covariance matrix Σθ̂ = M(β)ΛkM
t(β), where Λk is the

asymptotic covariance matrix of
√
n(λ̂tβ, λ̂

t
θ).

The order k L-moments smooth test statistic is of the form Tk = nθ̂tΣ̂−1
θ̂
θ̂, in

which Σ̂θ̂ is a consistent estimator of Σθ̂ under the semiparametric null hypothesis.

The test based on Tk is referred to as the L-moments generalised smooth test

(LGST).

Elamir & Seheult (2004) give a simple unbiased estimator of the covariance ma-

trix of the first k sample L-moments, say n−1Λ̂k. A consistent estimator of Σθ̂ is

obtained by replacing β with its consistent MLME β̂, or, equivalently, by replac-

ing λ0β with λ̂0β , and replacing Λk with the exact estimator of Elamir & Seheult

(2004), resulting in Σ̂θ̂ = M(β̂)Λ̂kM
t(β̂).

Tests for individual L-moments may be constructed using the test statistics Vj =

θ̂j/σ̂j (j = p + 1, . . . , k), where σ̂2
j is the appropriate diagonal element of the es-

timated covariance matrix Σ̂θ̂. Tests based on Vj are referred to as the component

tests in the smooth test literature. The asymptotic null distributions of the test

statistics Tk and Vj are direct consequences of Theorem 1. In particular, under the
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null hypothesis f ∈ FSP , Tk converges weakly to χ2
k−p (k > p), and Vj converges

weakly to N(0, 1) (j = p + 1, . . . , k), provided that assumptions (A1) to (A4) of

Theorem 1 hold.

3.3 Relationship with Smooth Tests, the Wasserstein Distance

and the QQ-Plot

The construction of classical smooth tests starts by defining an order k smooth

alternative to the hypothesised density function f(.; β). In this section, however,

we show that the test is related to an order k alternative that varies smoothly from

the hypothesised quantile function, say Q0(.; β). This enables the examination of

the relationship of the new test to tests based on the Wasserstein distance and the

QQ-plot.

We consider the following kth order alternative to the hypothesised quantile func-

tion Q0,

Qk(u; β, θ) = Q0(u; β) +
k∑
j=1

θj(2j − 1)1/2hj−1(u), (3)

where the hj−1 are as before. Using (1), it is apparent that the θ parameters have

interpretations in terms of the L-moments. In particular, the rth L-moment of Qk
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is (suppressing the dependence on β)

λkr = (2r − 1)−1/2
∫ 1

0

Qk(u)hr−1(u)du

= (2r − 1)−1/2
∫ 1

0

(
Q0(u) +

k∑
j=1

θj(2j − 1)1/2hj−1(u)

)
hr−1(u)du

= (2r − 1)−1/2
∫ 1

0

Q0(u)hr−1(u)du

+(2r − 1)−1/2
k∑
j=1

θj(2j − 1)1/2
∫ 1

0

hj−1(u)hr−1(u)du

= λ0r + θr,

where λ0r is the rth L-moment of the hypothesised distribution. This demon-

strates that θr = λkr − λ0r measures the deviation from the rth L-moment of the

hypothesised distribution. Note that (3) also arises from the approximations of

the quantile functions Qk(u; β, θ) and Q0(u; β), using the truncated expansions of

Sillitto (1969).

Under the regularity conditions, note that θ̂r = θr(X, β̂) is a consistent estimator

of θr. Thus, at the rejection of the null hypothesis, the expansion of (3), with θj

replaced with θ̂j , may be used as a diagnostic tool. This gives an estimate of the

true quantile function, which can be considered as an improvement over the hy-

pothesised distribution. Because β̂ is the MLME and θj(X, β̂) only depends on X

through the sample L-moments λ̂, we write Qk(u; λ̂) for Qk(u; β̂, θ̂). Thas et al.

(2009) studied density estimators that were built on the same idea, except that the

density estimators were related to smooth alternatives to the hypothesised proba-

bility density function. We refer to Qk(u; λ̂) as an improved quantile estimator.

Along the lines of Efron & Tibshirani (1996), Qk(u; λ̂) may also be interpreted as
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a nonparametric quantile function estimator that has the special property that its

first k L-moments agree exactly with the corresponding sample L-moments.

LaRiccia (1991) proposed smooth tests of goodness of fit for distributions in a

location-scale family, starting from an expansion of Q(u) similar to (3), but he

considered functions other than hj(u). However note that LaRiccia’s work does

not involve L-moments.

We now relate our test with goodness of fit tests based on the empirical quantile

function (EQF), which is defined for u ∈ [0, 1], by

Q̂(u) = Xi:n if
i− 1

n
≤ u <

i

n
for some 1 ≤ i ≤ n.

While not referring to L-moments, del Barrio et al. (1999), del Bario et al. (2000)

and de Wet (2002) studied EQF tests. In particular, the unweighted test statistic is

of the form

W = n

∫ 1

0

(
Q̂(u)−Q0(u; β̃)

)2
du, (4)

in which β̃ is an estimator of β, different from the estimators discussed previously

in this paper. The integral in (4) is the Wasserstein distance between the EQF and

the hypothesised quantile function. If the MLME β̂ is used instead of β̃ and the
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EQF is replaced with Qk(u; λ̂), we find a new statistic,

Wk = n

∫ 1

0

(
Qk(u; λ̂)−Q0(u; β̂)

)2
du = n

∫ 1

0

(
k∑

j=p+1

θ̂j(2j − 1)1/2hj−1(u)

)2

du

= n

k∑
i=p+1

k∑
j=p+1

θ̂iθ̂j(2i− 1)1/2(2j − 1)1/2
∫ 1

0

hi−1(u)hj−1(u)du

= n

k∑
j=p+1

(2j − 1)θ̂2j .

The components θ̂j of our test statistic are thus also the components in the decom-

position of the EQF statistic when MLME is used for nuisance parameter estima-

tion and when Qk(u; λ̂) is used as the nonparametric quantile function estimate.

Although the final form of Wk suggests that the terms θ̂2j receive weights (2j−1),

we note that the asymptotic variance of θ̂j is proportional to 1/(2j − 1). Thus,

with σ2
j denoting the asymptotic variance of n1/2θ̂j under HSP

0 , Vj = θ̂j/σj the jth

component test statistic of Section 3.2, and c2j = (2j − 1)σ2
j , the test statistic Wk

can be expressed as

Wk = n
k∑

j=p+1

c2jV
2
j ,

which is a weighted sum of the component test statistics. When k is finite, Wk

has a proper limiting null distribution under the same assumptions required for

the convergence of the n1/2θ̂j (under H0). However, in the limit as k → ∞,

convergence of Wk depends on the cj . The study of this convergence is beyond

the scope of this paper, and the interested readers are referred to the papers of del

Barrio et al. (1999), del Bario et al. (2000), and de Wet (2002) in which similar

convergence issues as discussed.
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The asymptotic null distribution of Wk, as n → ∞, is stated in Corollary 1 in

Appendix 2 of the Supplementary Material. The proof is a direct consequence

of the asymptotic null distribution of θ̂ and the application of the singular value

decomposition.

Finally, we note that the EQF statistic (4) is directly related to the area under

the curve of the QQ-plot. This suggests that the use of a QQ-plot as a graphical

diagnostic tool for goodness of fit can benefit from a formal test based on the θ̂i

components, and vice versa. We refer to chapters 3 and 5 of Thas (2010) for a

detailed discussion on the interplay between QQ and PP-plots with smooth, EDF,

and EQF tests.

4 SIMULATION STUDY

In this section the behavior of the new class of tests is empirically investigated in

a simulation study. Two distributions have been selected for the null hypothesis:

the logistic distribution and the GPD. The GPD is included because it formed

the motivation for this research; see Section 1. The logistic is chosen because

its quantile function has a simple expression and because many competitor tests

are available for inclusion in the simulation study. For both distributions, the

quantile functions, MLMEs of the nuisance parameters and the elements of the

∆ and C matrices required for the construction of the GLST, are presented in

Supplementary Material Appendix 1.

Finally, we mention that the logistic distribution forms a location-scale family

with two nuisance parameters. It is a symmetric distribution, which is often vi-
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sually hard to distinguish from a normal distribution. The GPD included in this

study has both a scale and a shape parameter. It is a skew distribution and its

support depends the parameters.

4.1 Data-Driven Tests

The simulation studies in this section also include data-driven versions of the

LGST for which the order k is selected from the data. This class of tests is well

known for classical smooth tests in combination with MME or MLE; see Thas

(2010, section 4.3) for a detailed overview and references. Although empirical

power studies published in the statistical literature generally indicate that data-

driven tests have good overall power, the simulation studies will illustrate that this

behaviour does not apply to the data-driven versions of the LGST studied here.

Therefore, we have chosen not to present the theory of the data-driven LGST in

the body of this paper, but still include the empirical powers in the tables follow-

ing. The description of the data-driven LGST can be found in Appendix 2 of the

Supplementary Material.

4.2 The Logistic Distribution

The new L-moments generalised smooth test (LGST) and its component tests

(LV3 and LV4 for r = 3 and r = 4, respectively) are compared to selected com-

petitor tests. In particular we have included the generalised smooth test of Thas

et al. (2009) (GST), its component tests (V3 and V4 for r = 3 and r = 4, re-

spectively), the Anderson-Darling (AD) and Cramér-von Mises tests (CvM), both
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described by Stephens (1979), the empirical characteristic function test (Epps,

2005; Meintanis, 2004) based on the MME (ECF1) and the MLE (ECF2) of the

nuisance parameters and the empirical moment generating function tests (Mein-

tanis, 2004) based on MME (EMGF1) and MLE (EMGF2). We choose the GST

and LGST tests to have k = 4. We have also included a data-driven LGST (DD),

based on the modified BIC criterion, BICm, withM containing increasing index

sets up to order k = 6. Finally, the test related to the Wasserstein distance (Wk) is

included with k = 6. The alternatives considered here, are similar to those studied

by Thas et al. (2009).

As alternatives to the logistic distribution, the exponential, gamma and normal

distributions are considered.

Because the logistic distribution is from a location-scale family, the null distribu-

tions of all test statistics, except those for the DD and Wk tests, were approximated

using 1,000 Monte Carlo simulation runs. For the DD and Wk tests, which are

not location-scale invariant, the parametric bootstrap (1,000 runs) is used for p-

value calculations. All tests are performed at the 5% level of significance and the

empirical powers are obtained based on 1,000 simulation runs. Table 1 shows the

emprical levels and powers.

The levels of all tests are very close to the nominal level of 5%. For the exponential

alternatives many tests (AD, CvM, LGST, LV3, ECF1, ECF2, DD and Wk) have

very large powers and do not differ by more than 5% from one another. The

MME-based GST test and its component tests V3 and V4 have much smaller

powers. This holds also for the EMGF tests. Note that the LV4 fourth order

component test has small power too. This may be explained by the fact that for

18



both the logistic and the exponential distribution λ2/λ4 = 6. Because the use

of MLME makes the second L-moments of the fitted logistic distribution and the

sample of the exponential distribution coincide, their 4th order L-moments will

also be equal. The reason for the power of the LV4 test not being exactly equal

to the nominal significance level of 5% is that the variance estimator used in LV4

depends on L-moments up to order 8 and not all these L-moments agree between

the fitted logistic and the exponential sample observations. See Henze (1997) for

a theoretical treatment of this issue.

For the gamma alternatives the new component test LV3 outperforms all the oth-

ers. The ECF1 test is the second best. Overall the LGST test has also very good

power. The data-driven and Wasserstein-type L-moments based tests (DD and

Wk) are less powerful, which may be explained by the very good power of LV3

as compared to LV4. In this case, the DD and Wk tests exhibit a dilution effect,

i.e. they are sensitive to L-moment deviations up to order six, but because a strong

deviation is present in the third order L-moment (skewness), they loose power by

also assessing the higher orders.

Finally, the powers of all tests for detecting a normal distribution, are very poor.

Only the V4 and LV4 tests show some power.
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4.3 The Generalised Pareto Distribution

For the GPD we have included four alternatives: the gamma, Weibull, lognormal,

and inverse normal distributions. Each of these alternatives has also been consid-

ered in many other studies on goodness of fit testing for the GPD and they cover

a large subset of the GDP nuisance parameter space. We refer to De Boeck et al.

(2011) and the references therein for a more detailed discussion on the alternatives

and the competitor tests. The LGST test and its component tests (LV3 and LV4)

are compared with the Anderson-Darling (AD) and Cramér-von Mises (CvM)

tests of Choulakian & Stephens (2001), the Neyman smooth test of Radouane &

Crétois (2002) based on MME (NS1) and MLE (NS2) and the generalised smooth

test of order 4 (GST) and its components tests (V3 and V4) (De Boeck et al.,

2011). The data-driven test (DD) and the Wasserstein-type test (Wk) are also in-

cluded (k = 6 and p-value calculation as for the logistic distribution). All tests

are performed at the 5% level of significance and are implemented as parametric

bootstrap tests using 750 and 500 bootstrap samples for sample size n < 100 and

n = 100, respectively. Empirical levels and powers are computed based on 1,000

simulation runs. The results are presented in Tables 2 (levels) and 3 (power).

All tests have empirical sizes close to the nominal level of 5%, except for the GST

tests, which are conservative for GPDs with negative shape parameter. The latter

may be related to the non-existence of the MME when the shape parameter κ is

smaller than−1/(2k), with k = 4, the order of GST. The same is observed for the

MME-based NS1 test. Although the MLE does not exist for κ ≥ 1 (Smith, 1984),

we were able to apply MLE-based tests, because the profile likelihood estima-

tor of Davidson (1984) was possible. Choulakian & Stephens (2001) advocated
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this estimator for their AD and CvM tests. De Boeck et al. (2011) gave a more

detailed discussion on the existence problems of the MME and MLE and their

use in goodness of fit tests for the GPD. The MLME does not suffer from these

problems.

For the gamma alternatives the largest powers are always obtained with the third

order component test based on MME (V3), which are slightly larger than the

powers of the Wk and/or LV3 tests. For the Weibull alternatives the V3 test has

again the highest powers, except when the shape parameter equals 0.75, in which

case it shows a complete power break-down and the LV3 test is the best. At this

point we should remark that the powers of the MME-based tests (e.g. V3 and NS1)

cannot be trusted for the following reasons. Table 4 shows the expected values of

the shape parameter estimators for n = 100, using MLE, MME and MLME for

the four distributions used in this simulations study. For the Weibull with shape

parameter 0.75 and the log-normal distributions the estimators estimate the GPD

parameter to be negative, for which it is known that MME is not reliable (Hosking

& Wallis, 1987). The levels of the MME-based NS1 and V3 tests are indeed not

controlled for negative shape parameters, as illustrated in Table 2.

Finally, we note that the Wk test has overall rather good powers for the Weibull

alternatives. For the log-normal and inverse normal alternatives LV3 is generally

the best, while the MME-based tests under-perform and the MLE-based AD test

is rather good.

From the simulation study, we may conclude that tests focussing on the skewness

(V3 and LV3) are often the best. However, the MME-based V3 test may suffer

from existence issues when the estimated shape parameter is negative. The L-
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moments based LV3 test does not suffer from this problem. We do not recommend

the tests based of GST and LGST, and the higher order tests based on V4 and

LV4 for the alternatives considered. Overall the Wasserstein test (Wk) generally

performs better than the data-driven DD test. Finally, we note that the MLE-based

tests (e.g. AD) is almost never most powerful.
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5 EXAMPLE

Dupuis & Tsao (1998) fit a generalised extreme value distribution to 22 annual

maximum December temperatures at Fair Isle Weather Station, UK for 1974 to

1995. The data in degrees Celsius are presented in Table 5.

We proceed as Choulakian & Stephens (2001) by testing for goodness of fit for

the GPD on the complete data set, setting the threshold (i.e. lower limit of the

GPD) at the smallest observed data point while removing this observation from

the data, and later progressively increasing the threshold by removing the smallest

observations one by one until the test gives an insignificant result. At most three

consecutive observations are deleted. We do not recommend the approach they

adopted, but for comparison purposes proceed along the same lines. We analyse

the data with all tests for the GPD that were included in the simulation study of

Section 4.3, except for the NS test which does not exist for this dataset (it involves

the logarithm of a negative result).

Table 6 reports the parameter estimates with MLE, MME and MLME, and the

results of the hypothesis tests, based on 10,000 bootstrap runs. The data have also

been analysed by De Boeck et al. (2011). At the 5% level of significance, their

MME-based GST tests gave significant results for all three thresholds, whereas the

MLE-based tests give p-values larger than 5% for the two larger thresholds (9.0

and 9.2). These inconsistent results might have been caused by the parameter es-

timation: the parameter estimates indicate that the GPD shape parameter is larger

then 0, or even larger than 1, for which the MME behaves better than the MLE.

Therefore, De Boeck et al. (2011) argued that for this data set the MME-based
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Table 4: Approximate expected values of the estimators (MLE, MME and
MLME) of the GPD shape parameter for several distributions (gamma, Weibull,
log-normal and inverse normal) and for sample size n = 100. The meaning of p1
and p2 is as for Table 3. Approximations are based on 10,000 simulation runs.

Parameter Estimator
p1 p2 MLE MME MLME

gamma
1.5 2 0.32 0.54 0.67

1 2 0.32 0.55 0.68
Weibull

2 1.50 0.39 0.62 0.71
1 1.25 0.24 0.30 0.36
1 0.75 -0.38 -0.20 -0.33

log-normal
0 1 -0.11 -0.13 -0.06

inverse normal
1 1 0.04 0.06 0.21

Table 5: Annual maximum December temperatures at the Fair Isle weather station,
UK, for 1974 to 1995.

10.3 10.2 9.0 10.9 7.5 10.7 10.0 11.5 9.2 10.2 10.4
10.6 9.6 10.4 9.7 9.4 9.4 9.3 10.4 10.3 10.4 10.1
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GST may be trusted more than the MLE-based tests. The current results with the

MLME based LGST tests, however, rather confirm the results of the MLE-based

tests: no significant deviation from a GPD distribution for the two larger thresh-

olds 9.0 and 9.2. For the smallest threshold of 7.5 all tests agree that the sample

cannot be described by a GPD distribution.

Figure 1 shows the QQ-plots of the data with thresholds 7.5 and 9.0; the plot

for the threshold of 9.2 is similar to the latter and is not shown here. The plots

show both the QQ-plot of the observed quantiles versus the expected, and the

QQ-plot of the observed versus the expected quantiles from the improved quantile

function estimate of (3) with k = 4. These plots demonstrate that the QQ-plot for

the threshold of 7.5 can be improved by including two additional terms. For the

threshold of 9.2 not much improvement can be achieved, for the GPD fits well.

The convenient agreement of the conclusions from the QQ-plot and the formal

LGST test is a consequence of the direct link between these two goodness of fit

tools (Section 3.3).

The advantage of using an MLME-based test is that the existence of the parameter

estimators is no longer an issue when interpreting test results. Moreover, the

simulation study of Section 4 demonstrated that the LGST tests have good powers

in general.

6 DISCUSSION

We have proposed a class of smooth tests of goodness of fit. The tests make use

of the method of L-moment estimation for nuisance parameter estimation, and
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Table 6: Results for the Fair Isle data for the three thresholds: the first four sample
L-moments, parameter estimates with MME, MLE, and MLME, and the results of
several hypothesis tests (observed test statistics are given, with p-values in paren-
theses).

threshold
7.5 9.0 9.2

sample L-moments
λ̂1 10.0952 10.1500 10.2000

λ̂2 0.3543 0.3311 0.3123

λ̂3 −0.0114 −0.0046 −0.0017

λ̂4 0.0481 0.0515 0.0610
parameter estimates

κ̃ (MME) 8.65 1.54 1.22
σ̃ (MME) 25.04 2.93 2.22
κ̃ (MLE) 1.27 0.77 0.70
σ̃ (MLE) 5.09 1.97 1.65
κ̂ (MLME) 5.33 1.47 1.20
σ̂ (MLME) 6.63 2.94 2.20

test results
AD 2.97 (0.002) 0.946 (0.176) 0.80 (0.286)
CvM 0.57 (0.001) 0.165 (0.134) 0.15 (0.192)
LGST 21.61 (0.027) 2.64 (0.280) −3.98 (0.813)
LV3 3.86 (0.011) 1.01 (0.168) 0.35 (0.314)
LV4 −0.41 (0.674) 1.18 (0.090) 1.33 (0.073)
GST 110.06 (< 0.001) 28.11 (0.013) 27.60 (0.011)
V3 3.44 (< 0.001) 1.73 (0.174) 1.21 (0.326)
V4 9.91 (< 0.001) 5.01 (0.012) 5.11 (0.020)
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Figure 1: QQ-plots for the Fair Isle data with a threshold of 7.5 (left) and 9.0
(right). The circles represent the QQ-plots for the hypothesised GPD and the black
squares represent the QQ-plots for the improved quantile function with k = 4.

the components of the test statistic may be interpreted in terms of L-moments.

The test is basically a semiparametric test for testing equality of the first few L-

moments of the true distribution with those of the hypothesised distribution. Our

tests are particularly useful when the hypothesised distribution has a convenient

quantile function, or when other types of estimators (e.g. maximum likelihood

or method of moments) suffer from existence problems. The logistic, generalised

lambda, g-and-h, g-and-k and the generalised Pareto distributions (GPD) are ex-

amples. In this paper we have demonstrated that the new test has good power for

testing for the GPD and the logistic distributions. The new test often outperforms

many of its competitor tests in a simulation study. Moreover, the new tests do not

suffer from existence problems; this is particularly useful for the GPD distribu-

tion.

We have outlined our methods for continuous distributions, but as the definition
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of L-moments applies equally well to discrete random variables, our methods can

be applied for testing goodness of fit for discrete distributions too.

The tests proposed in this paper resemble the generalised smooth tests Rayner

et al. (2009), but with MLE or MME replaced with MLME, and with smooth

alternatives to the quantile function rather than to the density function.

L-moments have been used before in methods for assessing the goodness of fit to

hypothesised distributions. Harri & Coble (2011) constructed tests for normality,

using estimators of the L-skew (λ3/λ2) and L-kurtosis (λ4/λ2). These tests may

to some extent be considered analogous to our LV3 and LV4 tests, but our theory

is more generally applicable.

Chowdhurry et al. (1991) also used estimators of the L-moment ratios for con-

structing tests for regional generalised extreme value (GEV) distributions. A re-

gional distribution is a term that is used in hydrology in settings where one has

data series from several sites in a region (e.g. water level time series measured at

many location along a coast line). The regional distribution is a distribution that

holds for all sites in that region. The null hypotheses is that all data series from

sites in a region can be described by a hypothesised distribution; see e.g. Chowd-

hurry et al. (1991); Peel et al. (2001); Vogel et al. (2009) and the references therein

for methods relying on L-moments. Many authors also recommend the use of L-

moment diagrams as a visual diagnostic tool for assessing the fit of a regional

distribution (Hosking, 1990; Vogel & Fennessey, 1993; Hosking & Wallis, 1997,

among others). For each data set the estimated L-kurtosis is plotted against the

estimated L-skew. Each potential regional distribution is added as a line or a re-

gion. This is possible because for many distributions an exact or approximate
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relation between L-skew and L-kurtosis can be obtained. If the points are closely

scattered about one of the lines, the corresponding distribution is chosen as an

appropriate regional distribution. For formal hypothesis testing for a single data

set, we believe that L-moment diagrams add little value.

Many goodness of fit methods start from QQ-plots, which are also known as prob-

ability plots. For example, the Shapiro-Wilk (Shapiro & Wilk, 1965) and the

Filliben (Filliben, 1975) tests for normality are related to the correlation coeffi-

cient in a particularly constructed QQ-plot. See D’Agostino & Stephens (1986)

and Thas (2010) for detailed discussions of this type of test for distributions fit-

ted with the method of moments or with maximum likelihood. Such Probability

Plot Correlation Coefficient (PPCC) tests have also been studied by several au-

thors for distributions fitted with the method of L-moments (Chowdhurry et al.,

1991; Vogel et al., 2009) and good power has been claimed. However, disadvan-

tages of PPCC tests are that for many distributions no solid theory is available,

choices of plotting positions should be made, and null distribution approximation

is computationally intensive or one has to rely on published regression equations

for percentile approximations; see for example Heo et al. (2008). In this paper,

we have also recommended the use of QQ-plots when nuisance parameters are

estimated by the method of L-moments, but we have demonstrated that the com-

ponent test statistics V 2
j (or the unscaled θ̂j) are related to the sample version of

the area under the curve of the QQ-plot. In this sense, when MLME is used, we

advocate the use of the graphical QQ-plot tool in combination with our tests. This

procedure will minimise the chance of conflicting conclusions from the graphical

and the formal testing assessments.
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The idea of using L-moments for the construction of a goodness of fit test may

also be employed for the two-sample and K-sample cases in which the null hy-

pothesis is expressed as the equality of the first few L-moments of the two or K

distributions. A test statistic may then be constructed based on the contrasts of the

L-moments sample estimators. For example, θ̂r = λ̂1r − λ̂2r with λ̂1r and λ̂2r the

estimators of the r-th L-moments of the two distributions to be compared.
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A Proof of Theorem 1

The inverse of the function λ0β(β) is expressed as β(λ0β); its existence is guaran-

teed by (A2) and the Inverse Function Theorem.

The (k − p) × p matrix ∆(β∗) has element (i, j) equal to (i = 1, . . . , k − p; j =

1, . . . , p)
∂

∂βj
λ0(i+p)(β)

∣∣
β=β∗

(these derivatives exist due to (A3)). Let M(β) denote the (k−p)×k matrix with

first p columns given by −∆(β)C(λ0β) and with the last (k − p) columns given

by the (k − p)× (k − p) identity matrix.

Consider now the nested Taylor expansion of θ̂ = θ(X, β̂) = λ̂θ − λ0θ(β̂) (using

(A2) and (A3)),

θ(X, β̂) = λ̂θ −
(
λ0θ(β) + ∆(β)(β̂ − β) + oP (β̂ − β)

)
= λ̂θ − λ0θ(β)−∆(β)

(
β(λ̂)− β(λ)

)
+ oP (β̂ − β)

= λ̂θ − λ0θ(β)−∆(β)
(
β + C(λ0β)(λ̂0β − λ0β) + oP (λ̂0β − λ0β)− β

)
+oP (β̂ − β)

= λ̂θ − λ0θ(β)−∆(β)C(λ0β)(λ̂0β − λ0β) + oP (β̂ − β) + oP (λ̂0β − λ0β).

With M(β) as defined previously, we may write θ(β̂) = M(β)
(
λ̂− λ0(β)

)
+

oP (n−1/2), from which we find the asymptotic covariance matrix of n1/2θ(β̂) un-

der HSP
0 . Zero-mean normality follows from the asymptotic normality and con-

sistency of the sample L-moments and the MLME β̂ under assumptions (A1) and

(A2) and the semiparametric null hypothesis.
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Supplementary Material

Supl. Mat. App. 1 The Logistic and the Generalised

Pareto Distributions

The Logistic Distribution

The logistic disrtibution has quantile function

Q0(u) = µ+ σ log
u

1− u
.

The first four L-moments are listed below:

λ1 = µ λ2 = σ λ3 = 0 and λ4 = σ/6.

The estimating equations of the L-estimators of the nuisance parameters σ and σ

are given by

µ̂ = λ̂1 and σ̂ = λ̂2.

The elements of the ∆ matrix:

∂

∂µ
λ3 =

∂

∂σ
λ3 =

∂

∂µ
λ4 = 0 and

∂

∂σ
λ4 = 1/6.

The C matrix is the 2× 2 identity, because the nuisance parameter estimators are

equal to the two first sample L-moments.
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The Generalised Pareto Distribution

The generalised Pareto distribution (GPD) has quantile function

Q0(u) = µ+
σ

κ
[1− (1− u)κ] .

We assume that the location parameter µ is known and we set µ = 0.

The first four L-moments are listed below.

λ1 =
σ

1 + κ
λ2 =

σ

(1 + κ)(2 + κ)

λ3 =
σ(1− κ)

(1 + κ)(2 + κ)(3 + κ)
and λ4 =

σ(1− κ)(2− κ)

(1 + κ)(2 + κ)(3 + κ)(4 + κ)
.

The estimation equations of the L-estimators of the nuisance parameters σ and κ

are given by

σ̂ = (1 + κ̂)λ̂1 and κ̂ = λ̂1/λ̂2 − 2.

The elements of the ∆ matrix:

∂

∂σ
λ3 =

1− κ
(1 + κ)(2 + κ)(3 + κ)

∂

∂σ
λ4 =

(1− κ)(2− κ)

(1 + κ)(2 + κ)(3 + κ)(4 + κ)

∂

∂κ
λ3 = σ

2κ3 + 3κ2 − 12κ− 17

[(1 + κ)(2 + κ)(3 + κ)]2
and

∂

∂κ
λ4 = −σ2κ5 + κ4 − 52κ3 − 95κ2 + 92κ+ 172

[(1 + κ)(2 + κ)(3 + κ)(4 + κ)]2
.
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The elements of the C matrix:

∂

∂λ1
σ = 2λ1/λ2 − 1

∂

∂λ1
κ = 1/λ2

∂

∂λ2
σ = −λ21/λ22 and

∂

∂λ2
κ = −λ1/λ22.

Supl. Mat. App. 2. The Data-Driven LGST and a

Wasserstein-Type Test

Data-driven smooth goodness of fit tests were first proposed by Ledwina (1994)

and later further developed by Kallenberg & Ledwina (1997) and Inglot et al.

(1997), among others. The core of data-driven smooth tests exists in selecting the

order k by using the observed data, and using the selected order as the order of the

(data-driven) smooth test statistic. In this way the data-driven order k becomes a

random variable. Hence, the null distribution of the data-driven test statistic de-

pends on the data-driven order selection procedure. The order selection criterium

should be chosen so as to increase the power of the data-driven test for a large

class of alternatives.

We proceed along the lines of Claeskens & Hjort (2004) to extend the test to

allow the order k to be selected by the data. More generally, a data-driven test

allows the selection of even individual θ̂i’s in the test statistic. First we need

some extra notation. Let S denote an index set which indicates which θ̂j’s are

to be included in the LGST test statistic. For a given S, the LGST test statistic

becomes TS = nθ̂tSΣ̂−1
θ̂S
θ̂S with θ̂S a vector with elements θ̂i for which i ∈ S,
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and Σθ̂S
is constructed from Σθ̂ by selecting the rows and columns specified by

S. The component vector VS is defined in a similar fashion. We restrict S so that

1, . . . , p /∈ S and p+1 ≤ #S <∞, where #S denotes the number of elements in

the set S. The results of the previous section immediately show that the asymptotic

null distribution of TS is chi-squared with #S − p degrees of freedom. A data-

driven test allows the “model” S to be selected by the data. As in Claeskens &

Hjort (2004) we restrict the process to select from a finite number of models. Let

M denote the nonempty set of index sets S that may be selected. Let C(S) denote

a model selection criterion so that C(S1) > C(S2) indicates that S1 is a better

model than S2. Examples include the modified AIC and BIC criteria, defined as

(Janic & Ledwina, 2009; Claeskens & Hjort, 2004)

AIC(S) = TS − 2#S AICm(S) = V t
SVS − 2#S

BIC(S) = TS − ln(n)#S and BICm(S) = V t
SVS − ln(n)#S.

The selection rule, which gives the data-driven choice of an index set to be used

for testing, may now be formulated as

Ŝ = {R ∈M : R 6= φ and C(R) ≥ C(Q),∀Q ∈M}. (5)

If this results in more than one index set R with the same C(R), the one with the

smallest cardinality is selected. This description includes both order selection and

subset selection. The next theorem is basically Theorem 4.8 of Thas (2010), based

on section 3.1 of Claeskens & Hjort (2004). It requires the joint asymptotic null

distribution of all TS for S ∈ M. Since these TS statistics are quadratic forms of
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θ̂S , it is sufficient to know the limiting null distribution of θ̂R with R the smallest

index set so that R ∩ S 6= φ for all S ∈M. Theorem 2 gives this distribution.

Theorem 2 Suppose that for all nonempty S with p+ 1 ≤ #S ≤ ∞, the asymp-

totic joint null distribution of the test statistics TS (S ∈M) is known and stochas-

tically represented by the vector (ŤS)S∈M. Also suppose that 1 ≤ #M < ∞.

Then, under assumptions (A1) up to (A4) of Theorem1, as n→∞, under H0,

TŜ
d−→
∑
R∈M

I
(
R = S̃

)
ŤR, (6)

where S̃ is given by (5) with C(.) replaced by Č(.), which is the limiting null

distribution of C(.).

The asymptotic null distribution provided in (6) may be approximated by means

of Monte Carlo simulations. In particular, by simulating from the (ŤS)S∈M dis-

tribution, the limiting distribution (Č(S))S∈M can be generated, and hence also

the limiting distribution of (5). With these simulated statistics, the right hand

side of (6) can be simulated, resulting in an approximation of the asymptotic null

distribution of the data-driven test statistic.

Kallenberg & Ledwina (1997), Inglot et al. (1997) and Janic & Ledwina (2009),

among others, constructed data-driven tests in a different way. They advocate an

order selection procedure that asymptotically allows the selected order, say kn,

to grow with the sample size n. When this happens at an appropriate rate, their

tests possess an omnibus consistency property. Their theory is more complicated

and depends on the particular choice of the model selection criterion, which is

45



typically of the BIC-type. However, since in practice the implementation of the

test will always involve a horizon M with only a finite number of models, we

prefer to work in the framework of Claeskens & Hjort (2004), which, moreover,

allows for a wider range of model selection criteria. We refer to section 4.3 of

Thas (2010) for a more detailed discussion on data-driven tests in a goodness of

fit setting.

Finally we present a corollary with the limiting distribution of the Wasserstein-

type test of Section 3.3.

Corollary 1 Assume that the regularity conditions (A1) up to (A4) of Theorem 1

hold true. Let J denote a diagonal matrix with elements (2j−1) (j = p+1, . . . , k),

and let Z and Z∗ be independent random vectors with (k − p) i.i.d. standard

normal variates. If k > p and the null hypothesis is true, then, as n → ∞,

Wk converges weakly to ZtΣ
1/2

θ̂
JΣ

1/2

θ̂
Z. The limiting distribution may also be

represented by
∑k

j=p+1 γjZ
∗tZ∗, where the γj are the eigenvalues of Σ

1/2

θ̂
JΣ

1/2

θ̂
.

The representation of the limiting distribution in Corollary 1 allows for a paramet-

ric bootstrap procedure with Σθ̂ replaced by a consistent estimator.
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Table Suppl. Mat. Table 1: Abbreviations
AD Anderson-Darling test
CvM Cramér-von Mises test of Stephens (1979)
DD data-driven LGST
ECF1 empirical characteristic function test (Epps, 2005; Meintanis, 2004) based on MME
ECF2 empirical characteristic function test (Epps, 2005; Meintanis, 2004) based on MLE
EMGF1 empirical moment generating function tests (Meintanis, 2004) based on MME
EMGF2 empirical moment generating function tests (Meintanis, 2004) based on MLE
GPD generalised Pareto distribution
GST generalised smooth test of Thas et al. (2009)
LGST L-moments generalised smooth test
LV3 third component test of the LGST
LV4 fourth component test of the LGST
MLE maximum likelihood estimator
MLME method of L-moments estimator
MME method of moments estimator
NS1 Neyman smooth test of Radouane & Crétois (2002) based on MME
NS2 Neyman smooth test of Radouane & Crétois (2002) based on MLE
V3 third component test of the GST
V4 fourth component test of the GST
Wk Wasserstein-type test
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